Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022225

RESUMO

The Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a common source of antibiotic resistance in Gram-negative bacterial infections. KPC-2 is a class A ß-lactamase that exhibits a broad substrate profile and hydrolyzes most ß-lactam antibiotics including carbapenems owing to rapid deacylation of the covalent acyl-enzyme intermediate. However, the features that allow KPC-2 to deacylate substrates more rapidly than non-carbapenemase enzymes are not clear. The active-site residues in KPC-2 are largely conserved in sequence and structure compared with non-carbapenemases, suggesting that subtle alterations may collectively facilitate hydrolysis of carbapenems. We utilized a nonbiased genetic approach to identify mutants deficient in carbapenem hydrolysis but competent for ampicillin hydrolysis. Subsequent pre-steady-state enzyme kinetics analyses showed that the substitutions slow the rate of deacylation of carbapenems. Structure determination via X-ray diffraction indicated that a F72Y mutant forms a hydrogen bond between the tyrosine hydroxyl group and Glu166, which may lower basicity and impair the activation of the catalytic water for deacylation, whereas several mutants impact the structure of the Q214-R220 active site loop. A T215P substitution lowers the deacylation rate and drastically alters the conformation of the loop, thereby disrupting interactions between the enzyme and the carbapenem acyl-enzyme intermediate. Thus, the environment of the Glu166 general base and the precise placement and conformational stability of the Q214-R220 loop are critical for efficient deacylation of carbapenems by the KPC-2 enzyme. Therefore, the design of carbapenem antibiotics that interact with Glu166 or alter the Q214-R220 loop conformation may disrupt enzyme function and overcome resistance.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Klebsiella pneumoniae/metabolismo , beta-Lactamases/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/química , Modelos Moleculares , Conformação Proteica , beta-Lactamases/química
2.
J Biol Chem ; 296: 100155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273017

RESUMO

Serine active-site ß-lactamases hydrolyze ß-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most ß-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 ß-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase ß-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 ß-lactamase.


Assuntos
Antibacterianos/química , Escherichia coli/enzimologia , Imipenem/química , Klebsiella pneumoniae/enzimologia , beta-Lactamases/química , Acilação , Ampicilina/química , Ampicilina/metabolismo , Ampicilina/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Cefalotina/química , Cefalotina/metabolismo , Cefalotina/farmacologia , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Imipenem/farmacologia , Cinética , Klebsiella pneumoniae/genética , Meropeném/química , Meropeném/metabolismo , Meropeném/farmacologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
3.
Nat Commun ; 9(1): 2231, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884781

RESUMO

CRISPR advances genome engineering by directing endonuclease sequence specificity with a guide RNA molecule (gRNA). For precisely targeting a gene for modification, each genetic construct requires a unique gRNA. By generating a gRNA against the flippase recognition target (FRT) site, a common genetic element shared by multiple genetic collections, CRISPR-FRT circumvents this design constraint to provide a broad platform for fast, scarless, off-the-shelf genome engineering.


Assuntos
Sistemas CRISPR-Cas , DNA Nucleotidiltransferases/metabolismo , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Sítios de Ligação/genética , DNA Nucleotidiltransferases/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Modelos Genéticos , Mutação , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...